

    
      
          
            
  
Welcome to talon’s documentation!

talon is a pure Python package that implements Tractograms As Linear
Operators in Neuroimaging.


User documentation



	Installation

	Getting started
	Creating a test tractogram

	Building the linear operator

	Generating data with a linear operator

	Explaining data with a linear operator





	Solving the inverse problem
	Defining regularization term

	Computing the solution

	Reading the result

	Examples





	Concatenating linear operators
	Examples





	Create linear operator from volume
	Example












API documentation



	Functions

	Classes
	LinearOperator

	ConcatenatedLinearOperator















            

          

      

      

    

  

    
      
          
            
  
Installation

For now, most people are expected to use talon as developers and should
install it by moving into the root talon directory and running:

python setup.py develop





To make sure talon was installed correctly, test it by running:

python -m unittest





You should see that a number of tests were run and no errors occurred.





            

          

      

      

    

  

    
      
          
            
  
Getting started

The talon package, at its core, provides a way to transform a tractogram
into a linear operator, or more precisely a matrix.
This matrix can be used in two ways: to generate data and to explain data.
In both cases, the type of the data is arbitrary and is specified by the user,
not by talon. To quickly get you started, the following examples illustrate
both use cases.

If you haven’t already, start by installing talon.
See the Installation section.

This short introduction is separated into 4 parts:


	Creating a test tractogram


	Building the linear operator


	Generating data with a linear operator


	Explaining data with a linear operator





Creating a test tractogram

To generate data using talon, we need a tractogram.
Here we will generate streamlines organised into a + sign.

import numpy as np
from scipy.interpolate import interp1d

# The number of voxels in each dimension of the output image.
image_size = 25

center = image_size // 2
t = np.linspace(0, 1, int(image_size / 0.1))

# Generate the horizontal and vertical streamlines.
horizontal_points = np.array([[0, center, center], [image_size - 1, center, center]])
horizontal_streamline = interp1d([0, 1], horizontal_points, axis=0)(t)

vertical_points = np.array([[center, 0, center], [center, image_size - 1, center]])
vertical_streamline = interp1d([0, 1], vertical_points, axis=0)(t)

# A tractogram is just a collection of streamlines.
tractogram = [horizontal_streamline, vertical_streamline]





To visualize the geometry of the streamlines, you can display them using matplotlib.

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(5, 5), dpi=150)
ax = fig.add_subplot(111, projection='3d')
ax.plot(tractogram[0][:,0], tractogram[0][:,1], tractogram[0][:,2], 'k')
ax.plot(tractogram[1][:,0], tractogram[1][:,1], tractogram[1][:,2], 'k')
ax.view_init(90,90)
ax.set_zticks([])
plt.show()





You should see the following image:

[image: _images/getting-started-streamlines.png]



Building the linear operator

Now that we have a tractogram, we can start using talon.
First, we will voxelize the tractogram by separating each streamline into
voxel elements. If you are familiar with tractography, streamlines are generated
by following peaks of an image. Voxelizing a tractogram is the opposite i.e.
creating peaks from streamlines. In order to voxelize the tractogram, we first
need to provide a list of directions of the possible orientations of the
streamlines represented as an array of unit vectors.

import talon

directions = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.float)
image_shape = (image_size,) * 3
indices, lengths = talon.voxelize(tractogram, directions, image_shape)





Next we define how each streamline direction is projected onto the data.

generators = np.ones((len(directions), 1))





Finally, we build the linear operator \(A\).

A = talon.operator(generators, indices, lengths)





Note that generators can be multidimensional.
One way to illustrate this is to use the directions as generators.

G = talon.operator(directions, indices, lengths)








Generating data with a linear operator

To generate data simply multiply (using the @ operator) the linear operator
by a weight vector.

# Using a vector off all ones gives all streamlines equal weight.
x = np.ones(A.shape[1])
b = A @ x

# We can do the same thing with the multidimensional operator.
m = G @ x





The data vector b can be reshaped into an image and visualized.

image = b.reshape(image_shape)

plt.figure(figsize=(5, 5), dpi=150)
plt.imshow(image[:, :, center])
plt.colorbar(shrink=0.8)
plt.show()





An we obtain the following image which corresponds to the streamline density.

[image: _images/getting-started-density.png]
The second data vector can also be visualized, but requires a bit more
manipulation.

rgb_image = m.reshape(image_shape + (3,))

plt.figure(figsize=(5, 5), dpi=150)
plt.imshow(rgb_image[:, :, center])
plt.show()





[image: _images/getting-started-rgb.png]



Explaining data with a linear operator

Considering the case where an error in the tractography algorithm generates a
spurious streamline in our tractogram. In the case of our example, we simply
add a diagonal streamline to tractogram.

diagonal_points = np.array([[0, center, center], [center, image_size - 1, center]])
diagonal_streamline = interp1d([0, 1], diagonal_points, axis=0)(t)

tractogram.append(diagonal_streamline)

# Visualize the new tractogram.
fig = plt.figure(figsize=(5, 5), dpi=150)
ax = fig.add_subplot(111, projection='3d')
ax.plot(tractogram[0][:,0], tractogram[0][:,1], tractogram[0][:,2], 'k')
ax.plot(tractogram[1][:,0], tractogram[1][:,1], tractogram[1][:,2], 'k')
ax.plot(tractogram[2][:,0], tractogram[2][:,1], tractogram[1][:,2], 'k')
ax.view_init(90,90)
ax.set_zticks([])
plt.show()





[image: _images/getting-started-spurious.png]
Given b, the data generated using by the original tractogram, we can use
talon to calculate the contribution of each streamline to the data. In order
to do so, we first have to generate a linear operator using the new
tractogram. In this case, we use also use a set of 1000 equally spaced unit
vectors as directions.

directions = talon.utils.directions(1000)
generators = np.ones((len(directions), 1))
indices, lengths = talon.voxelize(tractogram, directions, image_shape)
Z = talon.operator(generators, indices, lengths)





What we want to find are the streamline contributions x which minimize


\[\frac{1}{2} || Z  x - b||^2 + \Omega(x)\]

In this example it does not make sense to have streamlines with a negative
contribution, therefore, \(\Omega(x)\) will be set as a positivity
constraint. In talon, we can force positivity constraint  using the
talon.regularization function.

positivity_constraint = talon.regularization(non_negativity=True)





The resulting regularization term is then given to the talon.solve function
in order to obtain the streamlines contributions.

solution = talon.solve(Z, b, reg_term=positivity_constraint)
print('solution.x = [%.2f, %.2f, %.2f]' % tuple(solution.x))





solution.x = [1.00, 1.00, 0.00]





As it is possible to see, the two original streamlines contribute equally to
the data while the third streamline does not contribute.

We can use the talon solution to filter the tractogram and visualize only
the streamlines presenting a non-zero contribution.

# New filtered tractogram.
filtered_tractogram = []

fig = plt.figure(figsize=(5, 5), dpi=150)
ax = fig.add_subplot(111, projection='3d')

for i,s in enumerate(tractogram):

    # If the current streamline contributes to the data.
    if solution.x[i] > 0.0:

        # Add streamline to filtered tractogram.
        filtered_tractogram.append(s)

        # Visualize the streamline.
        ax.plot(s[:,0], s[:,1], s[:,2], 'k')

ax.view_init(90,90)
ax.set_zticks([])
plt.show()





[image: _images/getting-started-filtered.png]






            

          

      

      

    

  

    
      
          
            
  
Solving the inverse problem

The talon package, provides a way to solve the following optimization
problem


\[x^* = \arg\!\min_x \frac{1}{2}\|Ax - y\|_2^2 + \Omega(x)\]

where \(x\) is a vector in \(\mathbb{R}^n\), \(A\) is a linear
operator from \(\mathbb{R}^n \to \mathbb{R}^m\) and \(y\) is a vector in
\(\mathbb{R}^m\). The functional \(\Omega: \mathbb{R}^n \to \mathbb{R}\)
acts as regularization term and must be convex and lower semi-continuous.

The first term of the target functional is devoted to the fitting of the data
vector by means of the forward linear operator \(A\) and the
coefficient \(x_j\) associated to each atom of \(A\).


Defining regularization term


	The possible choices for the regularization term are the following.
	
	Least Squares


	Non Negativity Constraint


	Structured Sparsity


	Structured Sparsity with Non Negativity








Each of these regularization terms can be defined in talon by calling the
talon.regularization function.


Least Squares

Whenever \(\Omega(x) = 0\) for all the admissible values of \(x\), the
problem reduces to the classical Least Squares formulation. This is the default
regularization term in talon, hence one just needs to call the
talon.regularization function as follows.

regterm = talon.regularization()





See an example of this problem in Solve the Least Squares problem.




Non Negativity Constraint

To solve the Non Negative Least Squares (NNLS) problem the regularization term
must be the indicator function (in the sense of convex analysis) of the first
orthant, namely


\[\Omega(x) = \iota_{\ge 0}(x)\]

which is the function that takes value \(\infty\) whenever \(x\) does
not belong to the first orthant. The talon way to obtain such a regularization
term is the following.

regterm = talon.regularization(non_negativity=True)





See an example of this problem in Solve the Non Negative Least Squares (NNLS) problem.




Structured Sparsity

To promote sparse solutions, define the group sparsity regularization term


\[\Omega(x) = \lambda \sum_{g\in G} w_g \|x_g\|_2\]

where \(\lambda\) is the regularization parameter, \(w_g\) is the weight
associated to each group \(g\), \(x_g\) is the subset of entries of
\(x\) corresponding to group \(g\) and \(G\) is the list of groups.
See [2011j] for a discussion on the mathematical definition of these groups.

The groups \(g\in G\) must be defined as a list of lists, where each element
encodes the indices that define a single group. The weights \(w_g\)
associated to each group must be contained in a single numpy array of the same
length as \(G\). The following code defines three groups and some standard
weight for each of them.

groups = [[0, 2, 5], [1, 3, 4, 6], [7, 8, 9]]
weights = np.array([1.0 / len(g) for g in groups])





Ones the groups, the weights and the regularization parameter are defined,
the regularization term can be initialized as follows.

print('Regularization parameter: {}'.format(the_lambda))
print('Number of groups: {}'.format(len(groups)))
print('Number of weights: {}'.format(len(weights)))

regterm = talon.regularization(regularization_parameter=the_lambda,
                               groups=groups, weights=weights)





See an example of this problem at Solve the Group Sparsity problem.

Notice that the standard \(\ell_1\) regularization is a particular case of
structure sparsity where there is only one group containing all the admissible
indices. Assuming that these indices are \(0\dots n\), the following line of
code defines the problem for classical \(\ell_1\) regularization.

groups = [list(range(n))]





See an example of this problem at Solve the Lasso problem and Solve the Non Negative Lasso problem.




Structured Sparsity with Non Negativity

To add the Non Negativity constraint to the Structured Sparsity regularization
we just need to set the non_negativity flag as True during the
initialization of the regularization term.

regterm = talon.regularization(regularization_parameter=the_lambda,
                               groups=groups, weights=weights,
                               non_negativity=True) # here it is





See an example of this problem at Solve the Non Negative Group Sparsity problem.






Computing the solution

The function devoted to the computation of the solution of the inverse
problem is the talon.solve function. It can be called as follows.

linear_operator = # build linear operator
data = # define the data to fit
reg_term = # initialize the regularization term as above

solution = talon.solve(linear_operator=linear_operator,
                       data=data,
                       reg_term=regterm)





The optimization problem is solved with the FISTA+BT algorithm proposed by Beck
and Teboulle in [2009b].

See the API documentation for the description of the supplementary optional
parameters.

The talon.solve function is a wrapper of the
pyunlocbox.solvers.solve function.




Reading the result

The result of the optimization problem is given as a
scipy.optimize.OptimizeResult object, which is a dictionary with the
following fields.


	x: estimated solution.


	
	status: attribute of talon.solve.ExitStatus enumeration. If
	\(\text{status} < 1\), the algorithm didn’t converge properly.







	message: string explaining reason for termination.


	fun: value of the objective function at the minimizer.


	nit: number of performed iterations


	reg_param: value of the regularization parameter, if employed.







Examples

Build the ground truth tractogram with two bundles of fibers.

import matplotlib.pyplot as plt
import numpy as np
import talon

from mpl_toolkits.mplot3d import Axes3D
from scipy.interpolate import interp1d

# Set seed for reproducibility
np.random.seed(1992)

# The number of voxels in each dimension of the output image.
image_size = 25
center = image_size // 2

n_points = int(image_size / 0.01)
t = np.linspace(0, 1, n_points)

# Generate the ground truth tractogram.
tractogram = []
n_streamlines_per_bundle = 50

horizontal_points = np.array([[0, center, center],
                             [image_size - 1, center, center]])
horizontal_streamline = interp1d([0, 1], horizontal_points, axis=0)(t)

for k in range(n_streamlines_per_bundle):
    new_streamline = horizontal_streamline.copy()
    new_streamline[:,1] += (np.random.rand(1) - 0.5)
    tractogram.append(new_streamline)

vertical_points = np.array([[center, 0, center],
                           [center, image_size - 1, center]])
vertical_streamline = interp1d([0, 1], vertical_points, axis=0)(t)

for k in range(n_streamlines_per_bundle):
    new_streamline = vertical_streamline.copy()
    new_streamline[:,0] += (np.random.rand(1) - 0.5)
    tractogram.append(new_streamline)





Show the ground truth tractogram.

fig = plt.figure(figsize=(5, 5), dpi=150)
ax = fig.add_subplot(111, projection='3d')

for streamline in tractogram:
    ax.plot(streamline[:,0], streamline[:,1], streamline[:,2], 'r',
            linewidth=0.1)

ax.plot(horizontal_streamline[:,0],
        horizontal_streamline[:,1],
        horizontal_streamline[:,2], 'k')
ax.plot(vertical_streamline[:,0],
        vertical_streamline[:,1],
        vertical_streamline[:,2], 'k')
ax.view_init(90,90)
ax.set_zticks([])
plt.title('Ground truth tractogram')
plt.show()





You should see the following image:

[image: _images/gt_tractogram.png]
Generate the corresponding linear operator and the streamline density.

directions = talon.utils.directions(1000)
generators = np.ones((len(directions), 1))
image_shape = (image_size,) * 3
indices, lengths = talon.voxelize(tractogram, directions, image_shape)
linear_operator = talon.operator(generators, indices, lengths)

data = linear_operator @ np.ones(linear_operator.shape[1], dtype=np.float64)
image = data.reshape(image_shape)





Plot the density of the ground truth streamlines

plt.figure(figsize=(5, 5), dpi=150)
plt.imshow(image[:, :, center])
plt.colorbar(shrink=0.8)
plt.title('Ground truth density of streamlines')
plt.show()





You should see the following image:

[image: _images/gt_density.png]
Add a diagonal bundle of false positives.

diagonal_points = np.array([[0, center, center],
                           [center, image_size - 1, center]])
diagonal_streamline = interp1d([0, 1], diagonal_points, axis=0)(t)

for k in range(n_streamlines_per_bundle):
    new_streamline = diagonal_streamline.copy()
    new_streamline[:,0] += (np.random.rand(1) - 0.5)
    new_streamline[:,1] += (np.random.rand(1) - 0.5)
    tractogram.append(new_streamline)





Visualize the new tractogram.

fig = plt.figure(figsize=(5, 5), dpi=150)
ax = fig.add_subplot(111, projection='3d')

for streamline in tractogram:
    ax.plot(streamline[:,0], streamline[:,1], streamline[:,2], 'r', linewidth=0.1)

ax.plot(horizontal_streamline[:,0],
        horizontal_streamline[:,1],
        horizontal_streamline[:,2], 'k')
ax.plot(vertical_streamline[:,0],
        vertical_streamline[:,1],
        vertical_streamline[:,2], 'k')
ax.plot(diagonal_streamline[:,0],
        diagonal_streamline[:,1],
        diagonal_streamline[:,2], 'k')

ax.view_init(90,90)
ax.set_zticks([])
plt.title('Tractogram with supplementary bundle')
plt.show()





You should see the following image:

[image: _images/tractogram_with_fp.png]
Define the linear operator of the tractogram.

indices, lengths = talon.voxelize(tractogram, directions, image_shape)
linear_operator = talon.operator(generators, indices, lengths)






Solve the Least Squares problem

solution = talon.solve(linear_operator=linear_operator, data=data,
                       verbose='NONE')

print('\nLeast Squares solution')
print('Success: {}'.format(solution['success']))
print('Status: {}'.format(solution['status']))
print('Exit criterion: {}'.format(solution['message']))
print('Number of iterations: {}'.format(solution['nit']))

x = solution['x']
print('Average coefficient of horizontal streamlines: {}'.format(
      np.sum(x[0:n_streamlines_per_bundle])/n_streamlines_per_bundle))
print('Average coefficient of vertical streamlines: {}'.format(
      np.sum(x[n_streamlines_per_bundle:2*n_streamlines_per_bundle])/
      n_streamlines_per_bundle))
print('Average coefficient of diagonal streamlines : {}'.format(
      np.sum(x[2*n_streamlines_per_bundle:3*n_streamlines_per_bundle])/
      n_streamlines_per_bundle))
print('Value at minimizer: {}\n'.format(sum(solution['fun'])))





The output should be the following.

Least Squares solution
Success: True
Status: ExitStatus.ABSOLUTE_TOLERANCE_X
Exit criterion: XTOL
Number of iterations: 145
Average coefficient of horizontal streamlines: 0.9999996764340565
Average coefficient of vertical streamlines: 0.9999996573175529
Average coefficient of diagonal streamlines : 4.908558143242968e-06
Value at minimizer: 7.0157355592255e-07








Solve the Non Negative Least Squares (NNLS) problem

reg_term = talon.regularization(non_negativity=True)
solution = talon.solve(linear_operator=linear_operator, data=data,
                       reg_term=reg_term, verbose='NONE')

print('\nNNLS solution')
print('Success: {}'.format(solution['success']))
print('Status: {}'.format(solution['status']))
print('Exit criterion: {}'.format(solution['message']))
print('Number of iterations: {}'.format(solution['nit']))

x = solution['x']
print('Average coefficient of horizontal streamlines: {}'.format(
      np.sum(x[0:n_streamlines_per_bundle])/n_streamlines_per_bundle))
print('Average coefficient of vertical streamlines: {}'.format(
      np.sum(x[n_streamlines_per_bundle:2*n_streamlines_per_bundle])/
      n_streamlines_per_bundle))
print('Average coefficient of diagonal streamlines : {}'.format(
      np.sum(x[2*n_streamlines_per_bundle:3*n_streamlines_per_bundle])/
      n_streamlines_per_bundle))
print('Value at minimizer: {}\n'.format(sum(solution['fun'])))





The output should be the following.

NNLS solution
Success: True
Status: ExitStatus.ABSOLUTE_TOLERANCE_X
Exit criterion: XTOL
Number of iterations: 25
Average coefficient of horizontal streamlines: 0.9999991567472424
Average coefficient of vertical streamlines: 0.9999991568721199
Average coefficient of diagonal streamlines : 5.0072499918376545e-06
Value at minimizer: 3.620593044727195e-07








Solve the Lasso problem

regpar = 1.0 # regularization parameter a.k.a. the lambda in the formula
groups = []
groups.append([k for k in range(0, len(tractogram))])

weights = np.array([1.0 / np.sqrt(len(g)) for g in groups])

reg_term = talon.regularization(groups=groups, weights=weights,
                                regularization_parameter=regpar)

solution = talon.solve(linear_operator=linear_operator, data=data,
                       reg_term=reg_term, verbose='NONE')
print('\nLasso solution')
print('Success: {}'.format(solution['success']))
print('Status: {}'.format(solution['status']))
print('Exit criterion: {}'.format(solution['message']))
print('Number of iterations: {}'.format(solution['nit']))

x = solution['x']
print('Average coefficient of horizontal streamlines: {}'.format(
      np.sum(x[0: n_streamlines_per_bundle])/n_streamlines_per_bundle))
print('Average coefficient of vertical streamlines: {}'.format(
      np.sum(x[n_streamlines_per_bundle:2*n_streamlines_per_bundle]) /
      n_streamlines_per_bundle))
print('Average coefficient of diagonal streamlines : {}'.format(
      np.sum(x[2 * n_streamlines_per_bundle: 3 * n_streamlines_per_bundle]) /
      n_streamlines_per_bundle))
print('Value at minimizer: {}\n'.format(sum(solution['fun'])))





The output should be the following:

Lasso solution
Success: True
Status: ExitStatus.RELATIVE_TOLERANCE_COST
Exit criterion: RTOL
Number of iterations: 93
Average coefficient of horizontal streamlines: 0.9999926298816814
Average coefficient of vertical streamlines: 0.9999925070704963
Average coefficient of diagonal streamlines : -2.1995490196016877e-05
Value at minimizer: 0.8165122997013363








Solve the Non Negative Lasso problem

reg_term = talon.regularization(non_negativity=True,
                                groups=groups, weights=weights,
                                regularization_parameter=regpar)

solution = talon.solve(linear_operator=linear_operator, data=data,
                       reg_term=reg_term, verbose='NONE')
print('\nNon Negative Lasso solution')
print('Success: {}'.format(solution['success']))
print('Status: {}'.format(solution['status']))
print('Exit criterion: {}'.format(solution['message']))
print('Number of iterations: {}'.format(solution['nit']))

x = solution['x']
print('Average coefficient of horizontal streamlines: {}'.format(
      np.sum(x[0: n_streamlines_per_bundle])/n_streamlines_per_bundle))
print('Average coefficient of vertical streamlines: {}'.format(
      np.sum(x[n_streamlines_per_bundle:2*n_streamlines_per_bundle]) /
      n_streamlines_per_bundle))
print('Average coefficient of diagonal streamlines : {}'.format(
      np.sum(x[2 * n_streamlines_per_bundle: 3 * n_streamlines_per_bundle]) /
      n_streamlines_per_bundle))
print('Value at minimizer: {}\n'.format(sum(solution['fun'])))





The output should be the following:

Non Negative Lasso solution
Success: True
Status: ExitStatus.RELATIVE_TOLERANCE_COST
Exit criterion: RTOL
Number of iterations: 23
Average coefficient of horizontal streamlines: 0.9999914147578718
Average coefficient of vertical streamlines: 0.9999914603196133
Average coefficient of diagonal streamlines : 4.482209580050452e-06
Value at minimizer: 0.8164938196507543








Solve the Group Sparsity problem

groups = []
groups.append([k for k in range(0, n_streamlines_per_bundle)]) # horizontal
groups.append([k for k in range(n_streamlines_per_bundle,
              2 * n_streamlines_per_bundle)]) # vertical
groups.append([k for k in range(2 * n_streamlines_per_bundle,
              3 * n_streamlines_per_bundle)]) # diagonal

weights = np.array([1.0 / np.sqrt(len(g)) for g in groups])

reg_term = talon.regularization(groups=groups, weights=weights,
                                regularization_parameter=regpar)

solution = talon.solve(linear_operator=linear_operator, data=data,
                       reg_term=reg_term, verbose='NONE')
print('\nGroup Sparsity solution')
print('Success: {}'.format(solution['success']))
print('Status: {}'.format(solution['status']))
print('Exit criterion: {}'.format(solution['message']))
print('Number of iterations: {}'.format(solution['nit']))

x = solution['x']
print('Average coefficient of horizontal streamlines: {}'.format(
      np.sum(x[0: n_streamlines_per_bundle])/n_streamlines_per_bundle))
print('Average coefficient of vertical streamlines: {}'.format(
      np.sum(x[n_streamlines_per_bundle:2*n_streamlines_per_bundle]) /
      n_streamlines_per_bundle))
print('Average coefficient of diagonal streamlines : {}'.format(
      np.sum(x[2 * n_streamlines_per_bundle: 3 * n_streamlines_per_bundle]) /
      n_streamlines_per_bundle))
print('Value at minimizer: {}\n'.format(sum(solution['fun'])))





The output should be the following:

Group Sparsity solution
Success: True
Status: ExitStatus.RELATIVE_TOLERANCE_COST
Exit criterion: RTOL
Number of iterations: 64
Average coefficient of horizontal streamlines: 0.9999821712768615
Average coefficient of vertical streamlines: 0.9999823618643954
Average coefficient of diagonal streamlines : 2.2318881330827924e-05
Value at minimizer: 2.000096258909371








Solve the Non Negative Group Sparsity problem

reg_term = talon.regularization(groups=groups, weights=weights,
                                non_negativity=True,
                                regularization_parameter=regpar)

solution = talon.solve(linear_operator=linear_operator, data=data,
                       reg_term=reg_term, verbose='NONE')
print('\nNon Negative Group Sparsity solution')
print('Success: {}'.format(solution['success']))
print('Status: {}'.format(solution['status']))
print('Exit criterion: {}'.format(solution['message']))
print('Number of iterations: {}'.format(solution['nit']))

x = solution['x']
print('Average coefficient of horizontal streamlines: {}'.format(
      np.sum(x[0: n_streamlines_per_bundle])/n_streamlines_per_bundle))
print('Average coefficient of vertical streamlines: {}'.format(
      np.sum(x[n_streamlines_per_bundle:2*n_streamlines_per_bundle]) /
      n_streamlines_per_bundle))
print('Average coefficient of diagonal streamlines : {}'.format(
      np.sum(x[2 * n_streamlines_per_bundle: 3 * n_streamlines_per_bundle]) /
      n_streamlines_per_bundle))
print('Value at minimizer: {}\n'.format(sum(solution['fun'])))





The output should be the following:

Non Negative Group Sparsity solution
Success: True
Status: ExitStatus.RELATIVE_TOLERANCE_COST
Exit criterion: RTOL
Number of iterations: 22
Average coefficient of horizontal streamlines: 0.9999825264666186
Average coefficient of vertical streamlines: 0.9999825878147537
Average coefficient of diagonal streamlines : 0.0
Value at minimizer: 1.9999822314331122








References


	2009b

	Beck, Amir, and Marc Teboulle. “A fast iterative
shrinkage-thresholding algorithm for linear inverse problems.” SIAM journal
on imaging sciences 2.1 (2009): 183-202.



	2011j

	Jenatton, Rodolphe, et al. “Proximal methods for hierarchical
sparse coding.” Journal of Machine Learning Research 12.Jul (2011):
2297-2334.













            

          

      

      

    

  

    
      
          
            
  
Concatenating linear operators

It is possible to concatenate linear operators in a way that imitates the
numpy.concatenate function. The only concatenations that are allowed are
in the vertical and horizontal directions.

The talon.concatenate function requires an iterable containing the linear
operators to concatenate and the axis along which they have to be concatenated.

The following code shows the correct syntax to concatenate two linear operators
\(A\) and \(B\) vertically and horizontally:

V = talon.concatenate((A, B), axis=0) # vertical (default)
H = talon.concatenate((A, B), axis=1) # horizontal





which correspond to the following


\[\begin{split}V = \begin{bmatrix} A \\ B \end{bmatrix} \qquad
H = \begin{bmatrix} A & B \end{bmatrix}.\end{split}\]


Examples

Build a tractogram with two crossing bundles of fibers and the corresponding
linear operator.

import numpy as np
import talon

from scipy.interpolate import interp1d

# Set seed for reproducibility
np.random.seed(1992)

# The number of voxels in each dimension of the output image.
image_size = 25
center = image_size // 2

n_points = int(image_size / 0.01)
t = np.linspace(0, 1, n_points)

streamlines_per_bundle = 50

def generate_crossing_tractogram():
    tractogram = []

    horizontal_points = np.array([[0, center, center],
                                 [image_size - 1, center, center]])
    horizontal_streamline = interp1d([0, 1], horizontal_points, axis=0)(t)

    for k in range(streamlines_per_bundle):
        new_streamline = horizontal_streamline.copy()
        new_streamline[:,1] += (np.random.rand(1) - 0.5)
        tractogram.append(new_streamline)

    vertical_points = np.array([[center, 0, center],
                               [center, image_size - 1, center]])
    vertical_streamline = interp1d([0, 1], vertical_points, axis=0)(t)

    for k in range(streamlines_per_bundle):
        new_streamline = vertical_streamline.copy()
        new_streamline[:,0] += (np.random.rand(1) - 0.5)
        tractogram.append(new_streamline)
    return tractogram

cross_tractogram = generate_crossing_tractogram()
directions = talon.utils.directions(1000)
generators = np.ones((len(directions), 1))
image_shape = (image_size,) * 3
indices, lengths = talon.voxelize(cross_tractogram, directions, image_shape)

A = talon.operator(generators, indices, lengths)






Vertical concatenation

If multiple features for each streamline are encoded in different linear
operators we can concatenate different linear operators vertically. If \(A\)
encodes the linear operator for the set of streamlines \(\alpha\) and
generators \(G_1\) and \(B\) encodes the linear operator for the same
streamlines but with generators \(G_2\), instead of rebuilding the linear
operator from scratch we can concatenate \(A\) and \(B\) vertically
to obtain the same result.

G2 = np.random.rand(len(directions), 5) # New generators
B = talon.operator(G2, indices, lengths)

V = talon.concatenate((A,B), axis=0)

print('Shape of A: {}'.format(A.shape))
print('Shape of B: {}'.format(B.shape))
print('Shape of V: {}'.format(V.shape))
print('Check: {} + {} = {}'.format(A.shape[0], B.shape[0], A.shape[0] + B.shape[0]))





Notice that the axis=0 argument is redundant since it is the default.

The output should be the following:

Shape of A: (15625, 100)
Shape of B: (78125, 100)
Shape of V: (93750, 100)
Check: 15625 + 78125 = 93750








Horizontal concatenation

One (but not the only) reason to concatenate two linear operators horizontally
is to add a set of streamlines to the system. If \(A\) encodes the linear
operator for the set of streamlines \(\alpha\) and \(C\) for set
\(\beta\), instead of rebuilding the linear operator from scratch we can
concatenate \(A\) and \(C\) horizontally to obtain the same result.

def generate_diagonal_tractogram():
    tractogram = []
    diagonal_points = np.array([[0, center, center],
                               [center, image_size - 1, center]])
    diagonal_streamline = interp1d([0, 1], diagonal_points, axis=0)(t)

    for k in range(streamlines_per_bundle):
        new_streamline = diagonal_streamline.copy()
        new_streamline[:,0] += (np.random.rand(1) - 0.5)
        new_streamline[:,1] += (np.random.rand(1) - 0.5)
        tractogram.append(new_streamline)
    return tractogram

diag_tractogram = generate_diagonal_tractogram()
indices, lengths = talon.voxelize(diag_tractogram, directions, image_shape)

C = talon.operator(generators, indices, lengths) # diagonal





The concatenation of the two linear operators is performed as follows:

H = talon.concatenate([A, C], axis=1)
print('Shape of A: {}'.format(A.shape))
print('Shape of C: {}'.format(C.shape))
print('Shape of H: {}'.format(H.shape))





The output should be the following:

Shape of A: (15625, 100)
Shape of C: (15625, 50)
Shape of H: (15625, 150)





The matrix multiplication and transposition operations work as usual:

x = H @ np.random.rand(H.shape[1])
y = H.T @ np.random.rand(H.shape[0])

print('Shape of x: {}'.format(x.shape))
print('Shape of y: {}'.format(y.shape))





The output should be the following:

Shape of x: (15625,)
Shape of y: (150,)













            

          

      

      

    

  

    
      
          
            
  
Create linear operator from volume

It may be interesting to create linear operators that describe a single
contribution for each voxel as in a volume mask. This can be encoded as follows:


\[\begin{split}\begin{bmatrix}
    w_1 \cdot \mathbf{g} & & & \\
    & w_2 \cdot \mathbf{g} & & \\
    & & \ddots & \\
    & & & w_n \cdot \mathbf{g} \\
\end{bmatrix}\end{split}\]

where \(\mathbf{g}\) is the generator used for every voxel and
\(w_j\) is the value of the mask at voxel \(j\). Only the voxels
exhibiting non-zero value are considered.

To build such a linear operator, one just needs to provide a three-dimensional
ndarray to the talon.diagonalize function.


Example

Let us build a toy volume of dimension 2-by-2-by-2 with values from 0 to 7.

import numpy as np
values = np.arange(2 ** 3).astype(np.float64)

mask = values.reshape((2, ) * 3)
print(mask)





Output:

[[[0. 1.]
  [2. 3.]]

 [[4. 5.]
  [6. 7.]]]





To diagonalize the volume, call the corresponding talon function.

import talon
indices, weights = talon.diagonalize(mask)





The considered generator is vector \(g = [1, 10]^T\).

generators = np.array([[1.0, 10.0]])
linear_operator = talon.operator(generators, indices, weights)





Check the output:

print(linear_operator.todense())

[[ 0.  0.  0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.]
 [ 1.  0.  0.  0.  0.  0.  0.]
 [10.  0.  0.  0.  0.  0.  0.]
 [ 0.  2.  0.  0.  0.  0.  0.]
 [ 0. 20.  0.  0.  0.  0.  0.]
 [ 0.  0.  3.  0.  0.  0.  0.]
 [ 0.  0. 30.  0.  0.  0.  0.]
 [ 0.  0.  0.  4.  0.  0.  0.]
 [ 0.  0.  0. 40.  0.  0.  0.]
 [ 0.  0.  0.  0.  5.  0.  0.]
 [ 0.  0.  0.  0. 50.  0.  0.]
 [ 0.  0.  0.  0.  0.  6.  0.]
 [ 0.  0.  0.  0.  0. 60.  0.]
 [ 0.  0.  0.  0.  0.  0.  7.]
 [ 0.  0.  0.  0.  0.  0. 70.]]











            

          

      

      

    

  

    
      
          
            
  
Functions


	
talon.concatenate(operators, axis=0)[source]

	Concatenate a sequence of linear operator along axis 0 or 1.

This method defines the object that acts as the concatenation of the
linear operators contained in the list/tuple operators along the chosen
axis. The syntax is consistent with the one of np.concatenate.


	Parameters

	
	operators – list or tuple of LinearOperator objects to be
concatenated in the same axis.


	axis – int direction in which we want to concatenate the
LinearOperator or ConcatenatedLinearOperator objects that we
want to concatenate. Vertical concatenation is obtained for
axis = 0 and horizontal concatenation is obtained for
axis = 1 as in np.concatenate. (Default: 0)






	Returns

	the concatenated linear operator.



	Return type

	talon.core.ConcatenatedLinearOperator










	
talon.diagonalize(mask)[source]

	Returns the matrices used to create a linear operator from a mask

This functions transforms a volume mask into the weights and indices
components that are necessary to build a linear operator. It is assumed
that the all the voxels in the mask will share a common generator. The
indexed generator is therefore unique, corresponds to index zero, and is
weighted by the value contained in the mask at the specific voxel.


	Parameters

	mask – np.ndarray with three dimensions that contains the weight to be
associated to each voxel. Only voxels with non-zero weight are
considered.



	Returns

	tuple of length 2 containing


	
	index_sparsediagonal scipy.sparse matrix with a shape of (n, m)
	where n is the number of voxels of the volume and m in the number
of voxels of the mask.







	
	weight_sparsediagonal scipy.sparse matrix with a shape of (n, m)
	containing the value of the mask at each non-zero voxel in the same
fashion as index_sparse.













	Raises

	
	TypeError – If the the mask is not a numpy.ndarray.


	ValueError – If the mask does not have three dimensions.













	
talon.operator(generators, indices_of_generators, weights, operator_type='fast')[source]

	Create a LinearOperator object.

This method defines the object that describes the linear operator by means
of its fundamental components. These components are a set of generators, a
table that encodes the non-zero entries of the operator and indexes the
proper generator in each entry and another table that encodes the weight
applied to each called generator in the linear operator.

Each block of entries of the linear operator A is given by



\[A[k\cdot i\dots k\cdot(i+1), j] = g_{T_{i,j}} \cdot w_{i,j}\]




where k is the length of the generators, T is the table of indices and
w is the table of weights.


	Parameters

	
	generators – np.array where each row is a generator.


	indices_of_generators – COO sparse matrix that tells which generator is
called where in the linear operator.


	weights – COO sparse matrix that encodes the weight applied to each
generator indexed by indices_of_generators. It has the same
dimension as indices_of_generators.


	operator_type (optional) – string
Operator type to use. Accepted values are 'fast' and
'reference'. The latter is intended to be used only for testing
purposes. (default = fast).






	Returns

	the wanted linear operator.



	Return type

	talon.core.LinearOperator



	Raises

	ValueError – If reference_type is not 'fast' or 'reference'.










	
talon.regularization(non_negativity=False, regularization_parameter=None, groups=None, weights=None)[source]

	Get regularization term for the optimization problem.

By default this method returns an object encoding the regularization term



\[\Omega(x) = 0 .\]




If regularization_parameter, groups and weights are all not None it
returns the structured sparsity regularization.



\[\Omega(x) = \lambda \sum_{g\in G} w_g \|x_g\|_2\]




where \(\lambda\) is regularization_parameter, \(w_g\) is the
entry of w associated to g, \(x_g\) is the subset of entries
of x encoded by the indices of g and G is the list of groups.

If non_negativity is True it adds the non-negativity constraint to the
regularization term.



\[\Omega(x) \leftarrow \Omega(x) + \iota_{\ge 0}(x) .\]





	Parameters

	
	non_negativity – boolean (default = False)


	regularization_parameter – float. Must be >= 0 (default = None)


	groups – list of lists where each element encodes the indices of the
streamlines belonging to a single group. (default = None).

E.g.: groups = [[0,2,5], [1,3,4,6], [7,8,9]].




	weights – ndarray of the same length as groups. Weight associated to
each group. (default = None)






	Returns

	instance of one between


	talon.optimize.NoRegularization;


	talon.optimize.NonNegativity;


	talon.optimize.StructuredSparsity;


	talon.optimize.NonNegativeStructuredSparsity.








	Raises

	
	ValueError – If weights and groups do not have the same length.


	ValueError – If regularization_parameter < 0 .













	
talon.solve(linear_operator, data, reg_term=None, cost_reltol=1e-06, x_abstol=1e-06, max_nit=1000, x0=None, verbose='LOW')[source]

	Fit the solution.

This routine finds the x that solves the problem



\[\min_x 0.5 \|A x - y\|^2 + \Omega(x)\]




where x is the vector of coefficients to be retrieved, A is the linear
operator, y is the data vector and \(\Omega\) is defined as in
talon.regularization.


	Parameters

	
	linear_operator – linear operator endowed with the @ operation.


	data – ndarray of data to be fit. First dimension must be compatible
with the second of linear_operator.


	reg_term – regularization term defined by talon.regularization.
(default: \(\Omega(x) = 0.0\))


	cost_reltol – float relative tolerance on the cost (default = 1e-6).


	x_abstol – float mean abs tolerance on the variable (default = 1e-6).


	max_nit – int maximum number of iterations (default = 1000).


	x0 – ndarray starting value for the optimization. The length must be the
equal to the second dimension of linear_operator. (default=zeros)


	verbose – {‘NONE’, ‘LOW’, ‘HIGH’, ‘ALL’} The log level : 'NONE'
for no log, 'LOW' for resume at convergence, 'HIGH' for
info at all solving steps, 'ALL' for all possible outputs,
including at each steps of the proximal operators computation
(default=’LOW’).






	Returns

	dictionary with the following fields



	x : estimated minimizer of the cost function.


	status : attribute of talon.optimization.ExitStatus enumeration.


	message : string that explains the reason for termination.


	fun : evaluation of each term at the minimizer.


	nit : number of performed iterations.


	reg_param: value of the regularization parameter.











	Return type

	scipy.optimize.OptimizeResult










	
talon.voxelize(streamlines, vertices, image_shape, step=0.04)

	Transform a tractogram into the matrices that are necessary to build a
linear operator.


	Parameters

	
	streamlines – list of streamlines in voxel space. The coordinates of
each voxel are assumed to point at the center of the voxel itself.


	vertices – Nx3 np.array, vertices of an unit sphere in which we sample
the streamlines direction.


	image_shape – tuple, final shape of the mask image.


	step – double, streamlines interpolation step.






	Returns

	tuple of length 2 containing


	
	index_sparse(voxel x streamlines) scipy.sparse matrix containing
	for each voxel and fiber the index of the vertices that it is
closest to the streamline direction in that voxel.







	
	length_sparse(voxel x streamlines) scipy.sparse matrix containing
	for each voxel and fiber the length of the streamline in that voxel.













	Raises

	ValueError – If the streamlines are not in voxel space.










	
talon.utils.directions(number_of_points=180)[source]

	Get a list of 3D vectors representing the directions of the fibonacci
covering of a hemisphere of radius 1 computed with the golden spiral method.
The \(z\) coordinate of the points is always strictly positive.


	Parameters

	number_of_points – number of points of the wanted covering (default=180)



	Returns

	
	number_of_points x 3 array with the cartesian coordinates
	of a point of the covering in each row.









	Return type

	ndarray



	Raises

	ValueError – if number_of_points <= 0 .





References

https://stackoverflow.com/questions/9600801/evenly-distributing-n-points-on-a-sphere/44164075#44164075









            

          

      

      

    

  

    
      
          
            
  
Classes


LinearOperator


	
class talon.core.LinearOperator(generators, indices_of_generators, weights)[source]

	
	
__init__(generators, indices_of_generators, weights)[source]

	Linear operator that maps tractography to signal space.
The linear operator can be used to compute products with a vector.


	Parameters

	
	generators – np.array where each row is a generator.


	indices_of_generators – COO sparse matrix that tells which
generator is called where in the linear operator.


	weights – COO sparse matrix that encodes the weight applied to each
generator indexed by indices_of_generators. It has the same
dimension as indices_of_generators.






	Raises

	
	TypeError – If generators is not a numpy ndarray of float.


	TypeError – If indices_of_generators is not a COO scipy matrix.


	TypeError – If weights is not a COO scipy matrix of float64.


	ValueError – If weights does not have the same dimension
    as indices_of_generators.


	ValueError – If weights and indices_of_generators don’t have the
    same sparsity pattern.













	
property columns

	Returns the indices of the nonzero columns.


	Type

	int










	
property generator_length

	length of each generator (constant across generators).


	Type

	int










	
property generators

	Returns the generators of the linear operator.


	Type

	np.ndarray










	
property indices

	Returns the generator indices.


	Type

	np.ndarray










	
property nb_atoms

	Number of atoms (columns) in the linear operator.


	Type

	int










	
property nb_data

	Number of data points.


	Type

	int










	
property nb_generators

	Number of generators.


	Type

	int










	
property rows

	Returns the indices of the nonzero rows.


	Type

	int










	
property shape

	Shape of the linear operator.

The shape is given by the number of rows and columns of the linear
operator. The number of rows is equal to the number of data points
times the length of the generators. The number of columns is equal to
the number of atoms.


	Type

	tuple of int










	
todense()[source]

	Return the dense matrix associated to the linear operator.


Note

The output of this method can be very memory heavy to store. Use at
your own risk.




	Returns

	full matrix representing the linear operator.



	Return type

	ndarray










	
property transpose

	the transpose of the linear operator.


	Type

	TransposedLinearOperator










	
property weights

	The weights of the nonzero elements


	Type

	np.ndarray
















ConcatenatedLinearOperator


	
class talon.core.ConcatenatedLinearOperator(operators, axis)[source]

	
	
__init__(operators, axis)[source]

	Concatenated LinearOperator object

The ConcatenatedLinearOperator class implements the vertical or
horizontal concatenation of LinearOperator objects. It is endowed with
the multiplication operation (@).


	Parameters

	
	operators – list or tuple of LinearOperator objects to be
concatenated in the same axis.


	axis – int direction in which we want to concatenate the
LinearOperator or ConcatenatedLinearOperator objects that we
want to concatenate. Vertical concatenation is obtained for
axis = 0 and horizontal concatenation is obtained for
axis = 1 as in np.concatenate. (Default: 0)






	Raises

	
	TypeError – If any element of operator is not an instance of
    LinearOperator or ConcatenatedLinearOperator.


	TypeError – If operators is not a list or a tuple.


	ValueError – If axis is not 0 or 1.


	ValueError – If operators is an empty list or tuple.


	ValueError – If the operators do not have compatible dimensions.













	
property axis

	axis in which the concatenation was performed.


	Type

	int










	
property operators

	list of concatenated operators.


	Type

	list










	
property shape

	Shape of the concatenated linear operator.


	Type

	tuple of int










	
todense()[source]

	Return the dense matrix associated to the linear operator.


Note

The output of this method can be very memory heavy to store. Use at
your own risk.




	Returns

	full matrix representing the linear operator.



	Return type

	ndarray










	
property transpose

	transpose of the linear
operator.


	Type

	TransposedConcatenatedLinearOperator



















            

          

      

      

    

  

    
      
          
            

   Python Module Index


   
   t
   


   
     		 	

     		
       t	

     
       	[image: -]
       	
       talon	
       

     
       	
       	   
       talon.utils	
       

   



            

          

      

      

    

  

    
      
          
            

Index



 _
 | A
 | C
 | D
 | G
 | I
 | L
 | M
 | N
 | O
 | R
 | S
 | T
 | V
 | W
 


_


  	
      	__init__() (talon.core.ConcatenatedLinearOperator method)

      
        	(talon.core.LinearOperator method)


      


  





A


  	
      	axis() (talon.core.ConcatenatedLinearOperator property)


  





C


  	
      	columns() (talon.core.LinearOperator property)


  

  	
      	concatenate() (in module talon)


      	ConcatenatedLinearOperator (class in talon.core)


  





D


  	
      	diagonalize() (in module talon)


  

  	
      	directions() (in module talon.utils)


  





G


  	
      	generator_length() (talon.core.LinearOperator property)


  

  	
      	generators() (talon.core.LinearOperator property)


  





I


  	
      	indices() (talon.core.LinearOperator property)


  





L


  	
      	LinearOperator (class in talon.core)


  





M


  	
      	
    module

      
        	talon


        	talon.utils


      


  





N


  	
      	nb_atoms() (talon.core.LinearOperator property)


  

  	
      	nb_data() (talon.core.LinearOperator property)


      	nb_generators() (talon.core.LinearOperator property)


  





O


  	
      	operator() (in module talon)


  

  	
      	operators() (talon.core.ConcatenatedLinearOperator property)


  





R


  	
      	regularization() (in module talon)


  

  	
      	rows() (talon.core.LinearOperator property)


  





S


  	
      	shape() (talon.core.ConcatenatedLinearOperator property)

      
        	(talon.core.LinearOperator property)


      


  

  	
      	solve() (in module talon)


  





T


  	
      	
    talon

      
        	module


      


      	
    talon.utils

      
        	module


      


  

  	
      	todense() (talon.core.ConcatenatedLinearOperator method)

      
        	(talon.core.LinearOperator method)


      


      	transpose() (talon.core.ConcatenatedLinearOperator property)

      
        	(talon.core.LinearOperator property)


      


  





V


  	
      	voxelize() (in module talon)


  





W


  	
      	weights() (talon.core.LinearOperator property)


  







            

          

      

      

    

  

    
      
          
            
  All modules for which code is available

	talon.core

	talon.optimization

	talon.utils

	talon.voxelization




            

          

      

      

    

  

    
      
          
            
  Source code for talon.core

# -*- coding: utf-8 -*-
from abc import ABC, abstractmethod

import numpy as np
import scipy.sparse as sp

DATATYPE = np.float64


[docs]def concatenate(operators, axis=0):
    """Concatenate a sequence of linear operator along axis 0 or 1.

    This method defines the object that acts as the concatenation of the
    linear operators contained in the list/tuple `operators` along the chosen
    `axis`. The syntax is consistent with the one of `np.concatenate`.

    Args:
        operators: list or tuple of LinearOperator objects to be
            concatenated in the same axis.
        axis: int direction in which we want to concatenate the
            LinearOperator or ConcatenatedLinearOperator objects that we
            want to concatenate. Vertical concatenation is obtained for
            `axis = 0` and horizontal concatenation is obtained for
            `axis = 1` as in np.concatenate. (Default: 0)

    Returns:
        talon.core.ConcatenatedLinearOperator: the concatenated linear operator.
    """
    return ConcatenatedLinearOperator(operators, axis)



def normalize_atoms(generators, indices_of_generators, weights):
    """
    Prepare the input of talon.operator to get a dictionary with normalized
    atoms.

    Given a triplet ``(generators, indices_of_generators, weights)``, this
    function returns a new triplet where the ``weights`` matrix is scaled in
    such a way that the resulting linear operator has columns with norm equal
    to 1.

    Args:
        generators : np.array where each row is a generator.
        indices_of_generators : COO sparse matrix that tells which generator is
            called where in the linear operator.
        weights : COO sparse matrix that encodes the weight applied to each
            generator indexed by indices_of_generators. It has the same
            dimension as indices_of_generators.

    Returns:
        generators : the same as the input.
        indices_of_generators : the same as the input.
        weights : COO sparse matrix where each column is scaled to get a
            normalized set of atoms.

    Raises:
        ValueError : if there are empty columns in `indices_of_generators`.
    """
    if not (len(np.unique(indices_of_generators.col)) ==
            indices_of_generators.shape[1]):
        raise ValueError(
            'There are empty columns in the `indices_of_generators` matrix.')

    norms = np.zeros(indices_of_generators.shape[1])

    # squared norm of each generator
    gg = np.square(np.linalg.norm(generators, axis=1))

    # squared weights
    ww = np.square(weights.data)

    for r, c, i, w in zip(
            indices_of_generators.row,
            indices_of_generators.col,
            indices_of_generators.data,
            ww):
        norms[c] += w * gg[i]
    norms = np.sqrt(norms)

    new_data = np.zeros(weights.data.size, dtype=DATATYPE)

    for i, (c, w) in enumerate(zip(weights.col, weights.data)):
        new_data[i] = w / norms[c] if norms[c] > 0 else 1.0

    normalized_weights = sp.coo_matrix(
        (new_data, (weights.row, weights.col)),
        shape=weights.shape
    )

    return generators, indices_of_generators, normalized_weights


[docs]def operator(generators, indices_of_generators, weights, operator_type='fast'):
    """Create a LinearOperator object.

    This method defines the object that describes the linear operator by means
    of its fundamental components. These components are a set of generators, a
    table that encodes the non-zero entries of the operator and indexes the
    proper generator in each entry and another table that encodes the weight
    applied to each called generator in the linear operator.

    Each block of entries of the linear operator A is given by

        .. math:: A[k\cdot i\dots k\cdot(i+1), j] = g_{T_{i,j}} \cdot w_{i,j}

    where `k` is the length of the generators, `T` is the table of indices and
    `w` is the table of weights.

    Args:
        generators : np.array where each row is a generator.
        indices_of_generators : COO sparse matrix that tells which generator is
            called where in the linear operator.
        weights : COO sparse matrix that encodes the weight applied to each
            generator indexed by indices_of_generators. It has the same
            dimension as indices_of_generators.
        operator_type (optional): string
            Operator type to use. Accepted values are ``'fast'`` and
            ``'reference'``. The latter is intended to be used only for testing
            purposes. (default = `fast`).

    Returns:
        talon.core.LinearOperator: the wanted linear operator.

    Raises:
        ValueError: If `reference_type` is not ``'fast'`` or ``'reference'``.
    """

    args = (generators, indices_of_generators, weights)

    if operator_type == 'fast':
        return FastLinearOperator(*args)

    elif operator_type == 'reference':
        return LinearOperator(*args)

    raise ValueError('Invalid reference type {}. Should be "fast" or '
                     '"reference"'.format(operator_type))



class AbstractLinearOperator(ABC):
    """Abstract class for all linear operators

    This abstract class defines the interface that all linear operators in
    talon must implement.

    """

    @property
    @abstractmethod
    def shape(self):
        """Returns the shape of the matrix."""
        pass

    @property
    @abstractmethod
    def todense(self):
        """Returns a dense matrix representation of the linear operator."""
        pass

    @property
    @abstractmethod
    def transpose(self):
        """Returns the transpose of the linear operator."""
        pass

    @property
    def T(self):
        """Returns the transpose of the linear operator."""
        return self.transpose

    @abstractmethod
    def __matmul__(self, x):
        """Dot product between a linear operator and a vector.

        The __matmul__ method is expected to compute the dot product between
        a linear operator and a vector. It is not required to support matrix
        matrix product.

        """
        pass

    def convert_x(self, x):
        """Converts x so that it can be used on the right of a dot product.

        This method converts x so that it has the right dimensions and type to
        be used as a right operand of a dot product with a linear operator.
        That is, it asserts that A @ x will work. Raises exceptions if the
        input cannot be converted to the correct format.

        Args:
            x: The vector to test.

        Returns:
            x: A numpy array that can be used in the dot product.

        Raises:
            TypeError : If x is not a numpy array.
            ValueError : If the length of x does not match the number of
                columns of the linear operator.

        """

        x = np.squeeze(np.asarray(x, dtype=DATATYPE))

        # It needs to be a vector.
        if np.ndim(x) != 1:
            raise ValueError(
                f'x must be a 1D vector, but its shape is {x.shape}')

        if not len(x) == self.shape[1]:
            raise ValueError(
                f'Dimension mismatch ({len(x)} != {self.shape[1]})')

        return x


[docs]class LinearOperator(AbstractLinearOperator):
[docs]    def __init__(self, generators, indices_of_generators, weights):
        """Linear operator that maps tractography to signal space.
        The linear operator can be used to compute products with a vector.

        Args:
            generators : np.array where each row is a generator.
            indices_of_generators : COO sparse matrix that tells which
                generator is called where in the linear operator.
            weights : COO sparse matrix that encodes the weight applied to each
                generator indexed by indices_of_generators. It has the same
                dimension as indices_of_generators.
        Raises:
            TypeError: If `generators` is not a numpy ndarray of float.
            TypeError: If `indices_of_generators` is not a COO scipy matrix.
            TypeError: If `weights` is not a COO scipy matrix of float64.
            ValueError: If `weights` does not have the same dimension
                as indices_of_generators.
            ValueError: If `weights` and `indices_of_generators` don't have the
                same sparsity pattern.
        """
        if not isinstance(generators, np.ndarray):
            raise TypeError('Expected type for "generators" is np.ndarray.')
        if not generators.dtype == DATATYPE:
            raise TypeError(
                'Expected dtype for "generators" is {}.'.format(str(DATATYPE)))

        self._generators = generators

        if not sp.isspmatrix_coo(indices_of_generators):
            raise (TypeError(
                'Expected type for "indices_of_generators" is '
                'scipy.sparse.coo_matrix.'))

        self._indices_of_generators = indices_of_generators.astype(int)

        if not sp.isspmatrix_coo(weights):
            raise (TypeError('Expected type for "weights" is np.ndarray.'))
        if not weights.dtype == DATATYPE:
            raise TypeError(
                'Expected dtype for "weights" is {}.'.format(str(DATATYPE)))
        if not weights.shape == indices_of_generators.shape:
            raise ValueError(
                '"indices_of_generators" and "weights" must have the same'
                ' dimension')
        if not (
                len(weights.data) == len(indices_of_generators.data) and
                np.array_equal(
                    sorted(zip(weights.row, weights.col)),
                    sorted(zip(indices_of_generators.row,
                               indices_of_generators.col)))):
            raise ValueError(
                '"indices_of_generators" and "weights" must have the same'
                ' sparsity pattern')

        self._weights = weights


    @property
    def columns(self):
        """int: Returns the indices of the nonzero columns."""
        return self._indices_of_generators.col

    @property
    def nb_generators(self):
        """int: Number of generators."""
        return self._generators.shape[0]

    @property
    def generator_length(self):
        """int: length of each generator (constant across generators)."""
        return self._generators.shape[1]

    @property
    def generators(self):
        """np.ndarray: Returns the generators of the linear operator."""
        return self._generators

    @property
    def indices(self):
        """np.ndarray: Returns the generator indices."""
        return self._indices_of_generators.data

    @property
    def nb_data(self):
        """int: Number of data points."""
        return self._indices_of_generators.shape[0]

    @property
    def nb_atoms(self):
        """int: Number of atoms (columns) in the linear operator."""
        return self._indices_of_generators.shape[1]

    @property
    def rows(self):
        """int: Returns the indices of the nonzero rows."""
        return self._indices_of_generators.row

    @property
    def shape(self):
        """:tuple of int: Shape of the linear operator.

        The shape is given by the number of rows and columns of the linear
        operator. The number of rows is equal to the number of data points
        times the length of the generators. The number of columns is equal to
        the number of atoms.
        """
        return self.nb_data * self.generator_length, self.nb_atoms

    @property
    def transpose(self):
        """TransposedLinearOperator: the transpose of the linear operator."""
        return TransposedLinearOperator(self)

    @property
    def weights(self):
        """np.ndarray: The weights of the nonzero elements"""
        return self._weights.data

    def __matmul__(self, x):
        """Matrix vector product (A @ x)

        Args:
            x: The right operand of the product. It's length must match the
                number of columns of the linear operator.

        Raises:
            TypeError : If x is not a numpy array.
            ValueError : If the length of x does not match the number of
                columns of the linear operator.
        """

        x = self.convert_x(x)

        product = np.zeros(self.shape[0], dtype=DATATYPE)
        for row, column, weighted_generator in self:
            tmp = weighted_generator * x[column]
            product[self.generator_length * row:
                    self.generator_length * (row + 1)] += tmp
        return product

[docs]    def todense(self):
        """Return the dense matrix associated to the linear operator.

        Note:
            The output of this method can be very memory heavy to store. Use at
            your own risk.

        Returns:
            ndarray: full matrix representing the linear operator.
        """
        dense = np.zeros(self.shape, dtype=DATATYPE)
        length = self.generator_length
        for row, column, generator in self:
            dense[length * row: length * (row + 1), column] = generator

        return dense


    def __iter__(self):
        indices = self._indices_of_generators
        rows, cols, data = indices.row, indices.col, indices.data
        weights = self._weights.data
        for r, c, idx, w in zip(rows, cols, data, weights):
            yield r, c, self._generators[idx, :] * w



class FastLinearOperator(LinearOperator):

    def __init__(self, generators, indices_of_generators, weights):
        """A LinearOperator that computes products quickly.

        The FastLinearOperator class implements a linear operator optimized to
        compute matrix-vector products quickly. It is single threaded and
        written in pure Python, which makes it a good default choice for linear
        operators.

        Args:
            generators : np.array where each row is a generator.
            indices_of_generators : COO sparse matrix that tells which
                generator is called where in the linear operator.
            weights : COO sparse matrix that encodes the weight applied to each
                generator indexed by indices_of_generators. It has the same
                dimension as indices_of_generators.

        Raises:
            TypeError: If generators is not a numpy ndarray of float64.
            TypeError: If indices_of_generators is not a COO scipy matrix.
            TypeError: If weights is not a COO scipy matrix of float64.
            ValueError: if weights does not have the same dimension
                as indices_of_generators.
            ValueError: if weights and indices_of_generators don't have the
                same sparsity pattern.

        """

        super().__init__(generators, indices_of_generators, weights)

        # Find the indices of the row which are not empty. This allows the
        # linear performance to be independent of the number of empty rows.
        row_indices = np.unique(self.rows)

        # The product is computed row by row. Here, we precompute which
        # generators are multiplied by which weight and x, and where the
        # result is placed.
        row_elements = [[] for _ in range(self.nb_data)]
        for i, r in enumerate(self.rows):
            row_elements[r].append(i)
        row_elements = [np.array(re) for re in row_elements if len(re) != 0]

        # The indices of the generator, for each row.
        row_generators = [self.indices[r] for r in row_elements]

        # The indices of nonzero columns for each row.
        row_columns = [self.columns[r] for r in row_elements]

        # The weights of the nonzero elements for each row.
        row_weights = [self.weights[r] for r in row_elements]

        length = self.generator_length

        def row_slice(row):
            return slice(length * row, length * (row + 1))

        row_slices = [row_slice(r) for r in row_indices]

        self._row = list(zip(row_columns, row_generators, row_weights,
                             row_slices))

    @property
    def transpose(self):
        """TransposedFastLinearOperator: transpose of the linear operator."""
        return TransposedFastLinearOperator(self)

    def __matmul__(self, x):
        """Matrix vector product (A @ x)

        Args:
            x: The right operand of the product. It's length must match the
                number of columns of the linear operator.

        Raises:
            TypeError : If x is not a numpy array.
            ValueError : If the length of x does not match the number of
                columns of the linear operator.
        """

        x = self.convert_x(x)

        product = np.zeros(self.shape[0], dtype=DATATYPE)

        for elements, generator_indices, weights, row_slice in self._row:
            row_x = x[elements] * weights
            row_generators = self.generators[generator_indices, :]
            product[row_slice] = np.dot(row_generators.T, row_x)

        return product


class TransposedLinearOperator(AbstractLinearOperator):

    def __init__(self, linear_operator):
        """Transposed of a LinearOperator object.

        Args:
            linear_operator : the LinearOperator object of which the transpose
                is wanted.
        """
        self._linear_operator = linear_operator

    @property
    def shape(self):
        return self._linear_operator.shape[::-1]

    def __matmul__(self, y):
        """Matrix vector product (A.T @ y)

        Args:
            y: The right operand of the product. It's length must match the
                number of columns of the transposed linear operator.

        Raises:
            TypeError if y is not a numpy array.
            ValueError if the length of y does not match the number of
                columns of the transposed linear operator.
        """

        y = self.convert_x(y)

        genlen = self._linear_operator.generator_length
        product = np.zeros(self.shape[0], dtype=DATATYPE)
        for row, col, weighted_generator in self._linear_operator:
            indices_range = range(genlen * row, genlen * (row + 1))
            product[col] += weighted_generator.dot(y[indices_range])
        return product

    def todense(self):
        """Return the dense matrix associated to the linear operator.

        Note:
            The output of this method can be very memory heavy to store. Use at
            your own risk.

        Returns:
            ndarray: full matrix representing the linear operator.
        """
        return self._linear_operator.todense().T

    @property
    def transpose(self):
        """LinearOperator: transpose of the transposed linear operator."""
        return self._linear_operator


class TransposedFastLinearOperator(TransposedLinearOperator):
    def __init__(self, linear_operator):
        """Transposed of a LinearOperator object.

        Args:
            linear_operator : the LinearOperator object of which the transpose
                is wanted.
        """
        super().__init__(linear_operator)

    def __matmul__(self, y):
        """Matrix vector product (A.T @ y)

        Args:
            y: The right operand of the product. It's length must match the
                number of columns of the transposed linear operator.

        Raises:
            TypeError if y is not a numpy array.
            ValueError if the length of y does not match the number of
                columns of the transposed linear operator.
        """

        y = self.convert_x(y)

        product = np.zeros(self.shape[0], dtype=DATATYPE)
        for (elements, generator_indices,
             weights, row_slice) in self._linear_operator._row:
            row_y = y[row_slice]
            row_generators = self._linear_operator.generators[
                             generator_indices, :]
            product[elements] += row_generators.dot(row_y) * weights

        return product


[docs]class ConcatenatedLinearOperator(AbstractLinearOperator):
[docs]    def __init__(self, operators, axis):
        """Concatenated LinearOperator object

        The ConcatenatedLinearOperator class implements the vertical or
        horizontal concatenation of LinearOperator objects. It is endowed with
        the multiplication operation (@).

        Args:
            operators: list or tuple of LinearOperator objects to be
                concatenated in the same axis.
            axis: int direction in which we want to concatenate the
                LinearOperator or ConcatenatedLinearOperator objects that we
                want to concatenate. Vertical concatenation is obtained for
                `axis = 0` and horizontal concatenation is obtained for
                `axis = 1` as in np.concatenate. (Default: 0)

        Raises:
            TypeError: If any element of `operator` is not an instance of
                LinearOperator or ConcatenatedLinearOperator.
            TypeError: If `operators` is not a list or a tuple.
            ValueError: If `axis` is not 0 or 1.
            ValueError: If `operators` is an empty list or tuple.
            ValueError: If the operators do not have compatible dimensions.
        """
        if not type(operators) in [list, tuple]:
            raise TypeError('Expected type for `operators` is list or tuple.')

        if axis not in [0, 1]:
            raise ValueError('Expected value for `axis` is 0 or 1.')

        if len(operators) < 1:
            raise ValueError('List of operators must be non-empty.')

        def good_instance(op):
            return (isinstance(op, LinearOperator) or
                    isinstance(op, TransposedLinearOperator) or
                    isinstance(op, ConcatenatedLinearOperator))

        if not all(map(good_instance, operators)):
            raise TypeError('All concatenated operators must be either '
                            'LinearOperator objects or '
                            'ConcatenatedLinearOperator objects.')

        if len(np.unique([op.shape[int(not axis)] for op in operators])) != 1:
            raise ValueError('Trying to concatenate linear operators with '
                             'non compatible dimensions.')

        self._axis = axis
        self._operators = operators
        self._slices = []
        self._transposed_operators = [op.T for op in self._operators]

        start_index = 0
        for linear_operator in self._operators:
            stop_index = start_index + linear_operator.shape[self._axis]
            self._slices.append(slice(start_index, stop_index))
            start_index = stop_index


    def __matmul__(self, x):
        """Matrix vector product (A @ x)

        Args:
            x: The right operand of the product. It's length must match the
                number of columns of the concatenated linear operator.

        Raises:
            TypeError if x is not a numpy array.
            ValueError if the length of x does not match the number of
                columns of the concatenated linear operator.
        """

        x = self.convert_x(x)

        product = np.zeros(self.shape[0], dtype=DATATYPE)
        if self._axis == 0:
            for indices, linear_operator in zip(self._slices, self.operators):
                product[indices] = linear_operator @ x
        else:
            for indices, linear_operator in zip(self._slices, self.operators):
                product += linear_operator @ x[indices]
        return product

    @property
    def axis(self):
        """int: axis in which the concatenation was performed."""
        return self._axis

    @property
    def operators(self):
        """list: list of concatenated operators."""
        return self._operators

    @property
    def shape(self):
        """:tuple of int: Shape of the concatenated linear operator.
        """
        n_rows = np.sum([block.shape[self.axis] for block in self._operators])
        n_columns = self._operators[0].shape[int(not self.axis)]
        the_shape = n_rows, n_columns
        if self.axis:
            the_shape = the_shape[::-1]
        return the_shape

    @property
    def transpose(self):
        """TransposedConcatenatedLinearOperator: transpose of the linear
        operator."""
        return TransposedConcatenatedLinearOperator(
            self, self._transposed_operators)

[docs]    def todense(self):
        """Return the dense matrix associated to the linear operator.

        Note:
            The output of this method can be very memory heavy to store. Use at
            your own risk.

        Returns:
            ndarray: full matrix representing the linear operator.
        """
        all_dense = []
        for op in self.operators:
            all_dense.append(op.todense())
        return np.concatenate(all_dense, self.axis)




class TransposedConcatenatedLinearOperator(ConcatenatedLinearOperator):
    def __init__(self, concatenated_operator, transposed_operators):
        """Transposed of a ConcatenatedLinearOperator object.

        Args:
            concatenated_operator: the ConcatenatedLinearOperator object
                of which the transpose is wanted.
        """
        self._concatenated_linear_operator = concatenated_operator

        axis = int(not self._concatenated_linear_operator.axis)

        super().__init__(transposed_operators, axis)

    @property
    def transpose(self):
        """LinearOperator: transpose of the transposed linear operator."""
        return self._concatenated_linear_operator




            

          

      

      

    

  

    
      
          
            
  Source code for talon.optimization

# -*- coding: utf-8 -*-
from abc import ABC
from enum import Enum

import numpy as np
from pyunlocbox import acceleration, functions, solvers
from scipy.optimize import OptimizeResult

import talon

# These keys are lambda functions in the original pyunlocbox.functions.func
# class that must be removed before serialization.
PYUNLOCBOX_KEYS_TO_REMOVE = ['y', 'A', 'At']


class RegularizationTerm(functions.func, ABC):
    def __init__(self, regularization_parameter):
        """Abstract base class for all regularization terms

        The optimization problem solved by `talon` is

            .. math:: \min_x 0.5 \|A x - y\|^2 + \Omega(x)

        where :math:`\Omega` is a regularization term. This class is the base
        for all concrete implementations of this term.

        Args:
            regularization_parameter: The scaling factor of the regularization
                term. Must be a float greater or equal to zero.

        Raises:
            TypeError: If the regularization parameter is not a float and
                cannot be converted to a float.
            ValueError: If the regularization parameter is negative.

        """
        super().__init__()

        # Verify that the regularization parameter is a non-negative float.
        try:
            regularization_parameter = float(regularization_parameter)
        except (TypeError, ValueError):
            raise TypeError(
                f'The regularization parameter must be a float, not a '
                f'{type(regularization_parameter)}.')

        if regularization_parameter < 0:
            raise ValueError(
                f'The regularization parameter must be non-negative '
                f'({regularization_parameter} < 0).')

        self._regularization_parameter = regularization_parameter
        self._groups = None
        self._non_negativity = False
        self._weights = None

    def __call__(self, x):
        return self._eval(x)

    def __getstate__(self):
        clean_dict = self.__dict__.copy()
        for k in PYUNLOCBOX_KEYS_TO_REMOVE:
            clean_dict.pop(k, None)
        return clean_dict

    @property
    def groups(self):
        return self._groups

    @property
    def non_negativity(self):
        return self._non_negativity

    @property
    def regularization_parameter(self):
        return self._regularization_parameter

    @property
    def weights(self):
        return self._weights


class NoRegularization(RegularizationTerm):
    def __init__(self):
        super().__init__(0.0)

    def _eval(self, x):
        return 0.0

    def _grad(self, x):
        raise NotImplementedError(
            'The gradient is not available for this regularization term.')

    def _prox(self, x, _=None):
        return x


class NonNegativity(NoRegularization):
    def __init__(self):
        super().__init__()
        self._non_negativity = True

    def _grad(self, x):
        raise NotImplementedError(
            'The gradient is not available for this regularization term.')

    def _prox(self, x, _=None):
        return np.maximum(x, 0.0)


class StructuredSparsity(RegularizationTerm):
    def __init__(self, regularization_parameter, groups, weights):
        super().__init__(regularization_parameter)
        self._groups = groups
        self._weights = weights

    def _eval(self, x):
        costs = [w * np.sqrt(np.sum(x[g] ** 2))
                 for g, w in zip(self._groups, self._weights)]
        return self._regularization_parameter * np.sum(costs)

    def _grad(self, x):
        raise NotImplementedError(
            'The gradient is not available for this regularization term.')

    def _prox(self, x, mu):
        v = x.copy()
        for g, w in zip(self._groups, self._weights):
            xn = np.sqrt(np.dot(v[g], v[g]))
            r = mu * self.regularization_parameter * w
            if xn > r:
                v[g] -= v[g] * r / xn
            else:
                v[g] = 0.0
        return v


class NonNegativeStructuredSparsity(StructuredSparsity):
    def __init__(self, regularization_parameter, groups, weights):
        super().__init__(regularization_parameter, groups, weights)
        self._non_negativity = True

    def _grad(self, x):
        raise NotImplementedError(
            'The gradient is not available for this regularization term.')

    def _prox(self, x, mu):
        v = np.maximum(x, 0.0)
        return super()._prox(v, mu)


[docs]def regularization(non_negativity=False, regularization_parameter=None,
                   groups=None, weights=None):
    """Get regularization term for the optimization problem.

    By default this method returns an object encoding the regularization term

        .. math:: \Omega(x) = 0 .

    If `regularization_parameter`, `groups` and `weights` are all not None it
    returns the structured sparsity regularization.

        .. math:: \Omega(x) = \lambda \sum_{g\in G} w_g \|x_g\|_2

    where :math:`\lambda` is `regularization_parameter`, :math:`w_g` is the
    entry of `w` associated to `g`, :math:`x_g` is the subset of entries
    of *x* encoded by the indices of *g* and `G` is the list of groups.

    If non_negativity is True it adds the non-negativity constraint to the
    regularization term.

        .. math:: \Omega(x) \leftarrow \Omega(x) + \iota_{\ge 0}(x) .

    Args:
        non_negativity: boolean (default = False)
        regularization_parameter: float. Must be >= 0 (default = None)
        groups: list of lists where each element encodes the indices of the
            streamlines belonging to a single group. (default = None).

            E.g.: ``groups = [[0,2,5], [1,3,4,6], [7,8,9]]``.
        weights: ndarray of the same length as `groups`. Weight associated to
            each group. (default = None)

    Returns:
        instance of one between

        * ``talon.optimize.NoRegularization``;
        * ``talon.optimize.NonNegativity``;
        * ``talon.optimize.StructuredSparsity``;
        * ``talon.optimize.NonNegativeStructuredSparsity``.

    Raises:
        ValueError: If weights and groups do not have the same length.
        ValueError: If regularization_parameter < 0 .
    """
    if regularization_parameter is None or groups is None or weights is None:
        is_structure_sparsity = False
    elif regularization_parameter == 0.0:
        is_structure_sparsity = False
    elif regularization_parameter < 0.0:
        raise ValueError('Negative regularization parameter not allowed.')
    elif len(groups) == len(weights):
        is_structure_sparsity = True
    else:
        raise ValueError('`groups` and `weights` are not coherent objects. '
                         'Check the type and the length.')

    if non_negativity:
        if is_structure_sparsity:
            return NonNegativeStructuredSparsity(regularization_parameter,
                                                 groups, weights)
        else:
            return NonNegativity()
    else:
        if is_structure_sparsity:
            return StructuredSparsity(regularization_parameter, groups,
                                      weights)
        else:
            return NoRegularization()



class ExitStatus(Enum):
    UNKNOWN = -1
    MAXIMUM_NUMBER_ITERATIONS = 0
    ABSOLUTE_TOLERANCE_COST = 1
    RELATIVE_TOLERANCE_COST = 2
    ABSOLUTE_TOLERANCE_X = 3


def _pyunlocbox_to_scipy_result(pub_result, **kwargs):
    sp_result = OptimizeResult()

    if pub_result['crit'] == 'DTOL':
        new_status = ExitStatus.ABSOLUTE_TOLERANCE_COST
    elif pub_result['crit'] == 'RTOL':
        new_status = ExitStatus.RELATIVE_TOLERANCE_COST
    elif pub_result['crit'] == 'XTOL':
        new_status = ExitStatus.ABSOLUTE_TOLERANCE_X
    elif pub_result['crit'] == 'MAXIT':
        new_status = ExitStatus.MAXIMUM_NUMBER_ITERATIONS
    else:
        new_status = ExitStatus.UNKNOWN
    sp_result['status'] = new_status

    sp_result['success'] = sp_result['status'].value > 0
    sp_result['message'] = pub_result['crit']
    sp_result['fun'] = pub_result['objective'][-1]
    sp_result['nit'] = pub_result['niter']
    sp_result['x'] = pub_result['sol']

    for key, value in kwargs.items():
        sp_result[key] = value

    return sp_result


[docs]def solve(linear_operator, data, reg_term=None, cost_reltol=1e-6,
          x_abstol=1e-6, max_nit=1000, x0=None, verbose='LOW'):
    """Fit the solution.

    This routine finds the `x` that solves the problem

        .. math:: \min_x 0.5 \|A x - y\|^2 + \Omega(x)

    where `x` is the vector of coefficients to be retrieved, `A` is the linear
    operator, `y` is the data vector and :math:`\Omega` is defined as in
    ``talon.regularization``.

    Args:
        linear_operator: linear operator endowed with the @ operation.
        data: ndarray of data to be fit. First dimension must be compatible
            with the second of `linear_operator`.
        reg_term: regularization term defined by talon.regularization.
            (default: :math:`\Omega(x) = 0.0`)
        cost_reltol: float relative tolerance on the cost (default = 1e-6).
        x_abstol: float mean abs tolerance on the variable (default = 1e-6).
        max_nit: int maximum number of iterations (default = 1000).
        x0: ndarray starting value for the optimization. The length must be the
            equal to the second dimension of `linear_operator`. (default=zeros)
        verbose : {'NONE', 'LOW', 'HIGH', 'ALL'} The log level : ``'NONE'``
            for no log, ``'LOW'`` for resume at convergence, ``'HIGH'`` for
            info at all solving steps, ``'ALL'`` for all possible outputs,
            including at each steps of the proximal operators computation
            (default='LOW').

    Return:
     scipy.optimize.OptimizeResult: dictionary with the following fields

         * x : estimated minimizer of the cost function.
         * status : attribute of talon.optimization.ExitStatus enumeration.
         * message : string that explains the reason for termination.
         * fun : evaluation of each term at the minimizer.
         * nit : number of performed iterations.
         * reg_param: value of the regularization parameter.
    """
    fit_term = functions.norm_l2(y=data, lambda_=0.5)
    fit_term.A = lambda x: linear_operator @ x
    fit_term.At = lambda x: linear_operator.T @ x

    if reg_term is None:
        reg_term = regularization()

    my_acceleration = acceleration.fista_backtracking()
    the_solver = solvers.forward_backward(accel=my_acceleration, step=0.5)

    if x0 is None:
        x0 = np.zeros(linear_operator.shape[1], dtype=talon.core.DATATYPE)

    solution = solvers.solve([fit_term, reg_term], x0, the_solver,
                             rtol=cost_reltol, xtol=x_abstol, maxit=max_nit,
                             verbosity=verbose)
    return _pyunlocbox_to_scipy_result(solution, regularization_term=reg_term)





            

          

      

      

    

  

    
      
          
            
  Source code for talon.utils

import numpy as np
import talon


[docs]def directions(number_of_points=180):
    """
    Get a list of 3D vectors representing the directions of the fibonacci
    covering of a hemisphere of radius 1 computed with the golden spiral method.
    The :math:`z` coordinate of the points is always strictly positive.

    Args:
        number_of_points : number of points of the wanted covering (default=180)

    Returns:
        ndarray : ``number_of_points`` x 3 array with the cartesian coordinates
            of a point of the covering in each row.

    Raises:
        ValueError : if ``number_of_points <= 0`` .

    References:
        https://stackoverflow.com/questions/9600801/evenly-distributing-n-points-on-a-sphere/44164075#44164075
    """
    number_of_points = int(number_of_points)

    if number_of_points <= 0:
        raise ValueError('The number of points for the covering must be >= 1 .')

    n = 2 * number_of_points
    indices = np.arange(0, n, dtype=float) + 0.5

    phi = np.arccos(1 - 2 * indices / n)
    theta = np.pi * (1 + np.sqrt(5)) * indices

    x = np.cos(theta) * np.sin(phi)
    y = np.sin(theta) * np.sin(phi)
    z = np.cos(phi)

    x, y, z = map(lambda a: a[:number_of_points], [x, y, z])

    points = np.c_[x, y, z].astype(talon.core.DATATYPE)

    return np.asarray([p / np.linalg.norm(p) for p in points])





            

          

      

      

    

  

    
      
          
            
  Source code for talon.voxelization

import numpy as np
from scipy.sparse import coo_matrix
import talon
from scipy import interpolate


def streamline_interpolation(streamline, step=0.1, spline_degree=1,
                             spline_smoothing=0.0):
    """Spline interpolation of streamlines.
    Args:
        streamline : Nx3 np.array representing a streamline.
        step : double distance between two streamlines points (default 0.1)
        spline_degree : integer must be between 1 and 5 (default 1)
        spline_smoothing: double parameter controlling the smoothness of
        the spline (default 0.0)

    Returns:
        Nx3 np.array representing the interpolated streamline

    Raises:
        ValueError: If spline_degree is not in [1,5]
        ValueError: If tnumber of points of the streamline is lower than the
                    spline order
    """
    if spline_degree < 1 or spline_degree > 5:
        raise ValueError(
            '"spline_degree" must be an integer between 1 and 5')
    if spline_degree > streamline.shape[0]:
        raise ValueError(
            '"spline_degree" must be lower than the number of points of \
            the streamline')

    s_length = np.sum(np.sqrt(np.sum(np.diff(streamline, axis=0) ** 2, 1)))

    u = np.linspace(0, 1, streamline.shape[0])
    tck, u = interpolate.splprep(
        streamline.T, u=u, k=spline_degree, s=spline_smoothing)

    streamline_points = np.int32(np.round(s_length / step))
    u_fine = np.linspace(0, 1, streamline_points)
    interpolated_points = interpolate.splev(u_fine, tck)

    return np.vstack(interpolated_points).T


def _voxelize_streamline(streamline, step=0.04):
    """Streamline to voxels.
    Args:
        streamline : Nx3 np.array representing a streamline.
        step :double minimum distance between two streamlines points

    Returns:
        out_voxel : Nx3 np.array representing the voxels in which the
        streamline passes through
        out_vector : Nx3 np.array representing direction vector of the
        streamline in each of the voxels
    """

    streamline_fine = streamline_interpolation(streamline, step)
    voxels = np.int32(np.round(streamline_fine))

    # Find where the voxel transitions occur. This is the last point in a
    # voxel.
    transitions = np.any(voxels[1:, :] != voxels[:-1, :], axis=1)
    transitions = np.nonzero(transitions)[0]
    start_points = np.hstack(([0], transitions + 1))
    end_points = np.hstack((transitions, [len(voxels) - 1]))

    # Remove single points and duplicate voxels that occur if streamlines
    # loop.
    keep = end_points != start_points
    start_points = start_points[keep]
    end_points = end_points[keep]
    _, unique_indices = np.unique(start_points, return_index=True)
    start_points = start_points[unique_indices]
    end_points = end_points[unique_indices]

    out_voxel = voxels[start_points]
    out_vector = streamline_fine[end_points] - streamline_fine[start_points]

    return out_voxel, out_vector


def voxelize_tractogram(streamlines, vertices, image_shape, step=0.04):
    """Transform a tractogram into the matrices that are necessary to build a
    linear operator.

    Args:
        streamlines : list of streamlines in voxel space. The coordinates of
            each voxel are assumed to point at the center of the voxel itself.
        vertices : Nx3 np.array, vertices of an unit sphere in which we sample
            the streamlines direction.
        image_shape : tuple, final shape of the mask image.
        step : double, streamlines interpolation step.

    Returns:
        tuple of length 2 containing

        * index_sparse : (voxel x streamlines) scipy.sparse matrix containing
            for each voxel and fiber the index of the vertices that it is
            closest to the streamline direction in that voxel.
        * length_sparse : (voxel x streamlines) scipy.sparse matrix containing
            for each voxel and fiber the length of the streamline in that voxel.

    Raises:
        ValueError: If the streamlines are not in voxel space.
    """

    s_max = np.max([np.max(s, 0) for s in streamlines], 0)
    s_min = np.min([np.min(s, 0) for s in streamlines], 0)

    if np.any(s_min < -0.5) or np.any(s_max > (np.array(image_shape) - 0.5)):
        raise ValueError(
            '"streamlines" are not in voxel space')

    locations = ([], [])
    indices = []
    lengths = []

    for i, s in enumerate(streamlines):

        # Find the voxels that the streamline crosses.
        voxels, directions = _voxelize_streamline(s, step=step)
        nonzero_voxels = np.ravel_multi_index(voxels.T, image_shape)

        # Compute the length of the streamline in a voxel.
        norms = np.linalg.norm(directions, axis=1)
        lengths.extend(norms)

        # Find the vertices that are closest to the true direction.
        directions = directions / norms[:, None]
        indices.extend(np.argmax(np.abs(np.dot(directions, vertices.T)), 1))

        # Save the location of the voxels.
        locations[0].extend(nonzero_voxels)
        locations[1].extend(np.full(len(nonzero_voxels), i))

    shape = (np.prod(image_shape), len(streamlines))
    indices = coo_matrix((indices, locations), shape, np.int64)
    lengths = coo_matrix((lengths, locations), shape, talon.core.DATATYPE)

    return indices, lengths


[docs]def diagonalize(mask):
    """Returns the matrices used to create a linear operator from a mask

    This functions transforms a volume mask into the weights and indices
    components that are necessary to build a linear operator. It is assumed
    that the all the voxels in the mask will share a common generator. The
    indexed generator is therefore unique, corresponds to index zero, and is
    weighted by the value contained in the mask at the specific voxel.

    Args:
        mask : np.ndarray with three dimensions that contains the weight to be
            associated to each voxel. Only voxels with non-zero weight are
            considered.

    Returns:
        tuple of length 2 containing

        * index_sparse : diagonal scipy.sparse matrix with a shape of (n, m)
            where n is the number of voxels of the volume and m in the number
            of voxels of the mask.
        * weight_sparse : diagonal scipy.sparse matrix with a shape of (n, m)
            containing the value of the mask at each non-zero voxel in the same
            fashion as ``index_sparse``.

    Raises:
        TypeError: If the the mask is not a numpy.ndarray.
        ValueError: If the mask does not have three dimensions.

    """

    if not isinstance(mask, np.ndarray):
        raise TypeError('The mask must be a numpy.ndarray .')

    if not (mask.ndim == 3):
        raise ValueError('The mask must be a ndarray with three dimensions.')

    flat_indices = np.flatnonzero(mask)
    weights = mask.ravel()[flat_indices]
    indices = np.zeros_like(weights)

    columns = np.arange(len(flat_indices))
    locations = (flat_indices, columns)
    shape = (mask.size, len(flat_indices))

    indices = coo_matrix((indices, locations), shape, np.int64)
    weights = coo_matrix((weights, locations), shape, talon.core.DATATYPE)
    return indices, weights





            

          

      

      

    

  _images/getting-started-rgb.png





_images/getting-started-spurious.png
10

15

20

25

25

20

15

10





_images/getting-started-density.png





_images/getting-started-filtered.png
10

15

20

25

25

20

15

10





_images/gt_tractogram.png
10

15

20

25

Ground truth tractogram

25

20

15

10





_images/tractogram_with_fp.png
Tractogram with supplementary bundle

10
15

20

25

25 20 15 10 5 0





_images/getting-started-streamlines.png
10

15

20

25

25

20

15

10





_images/gt_density.png
0

10

15

20

Ground truth density of streamlines

15

20

80

60

40

20





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to talon’s documentation!
        


        		
          Installation
        


        		
          Getting started
          
            		
              Creating a test tractogram
            


            		
              Building the linear operator
            


            		
              Generating data with a linear operator
            


            		
              Explaining data with a linear operator
            


          


        


        		
          Solving the inverse problem
          
            		
              Defining regularization term
              
                		
                  Least Squares
                


                		
                  Non Negativity Constraint
                


                		
                  Structured Sparsity
                


                		
                  Structured Sparsity with Non Negativity
                


              


            


            		
              Computing the solution
            


            		
              Reading the result
            


            		
              Examples
              
                		
                  Solve the Least Squares problem
                


                		
                  Solve the Non Negative Least Squares (NNLS) problem
                


                		
                  Solve the Lasso problem
                


                		
                  Solve the Non Negative Lasso problem
                


                		
                  Solve the Group Sparsity problem
                


                		
                  Solve the Non Negative Group Sparsity problem
                


                		
                  References
                


              


            


          


        


        		
          Concatenating linear operators
          
            		
              Examples
              
                		
                  Vertical concatenation
                


                		
                  Horizontal concatenation
                


              


            


          


        


        		
          Create linear operator from volume
          
            		
              Example
            


          


        


        		
          Functions
        


        		
          Classes
          
            		
              LinearOperator
            


            		
              ConcatenatedLinearOperator
            


          


        


      


    
  

_static/plus.png





_static/file.png





_static/minus.png





